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Abstract. The aim of this study was to evaluate the surface roughness of intraocular lenses (IOLs) generated by the manufacturing 
process and to determine the roughness parameters of 3D surface using atomic force microscopy (AFM). Intraocular lenses 
commercially available from a single manufacturer: Pharmacia & Upjohn Co. were investigated. Three intraocular lenses, model 
911A CeeOn Edge®, were analyzed on different areas of the posterior optic surface. For imaging surface roughness of intraocular 
lenses on nanometer scale we employed atomic force microscopy in contact mode with ambient air. Three parameters obtained by 
atomic force microscopy (Sa, Sq and Sz) were used in evaluation of intraocular lenses surface roughness. The parameters of surface 
roughness are an auxiliary index of biocompatibility and generates useful information about the material surface quality. The 
information generated in study may assist researchers in choosing, designing and manufacturing of intraocular lenses with optimal 
performance characteristics. 
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1. INTRODUCTION 

Cataract surgery with intraocular lens (IOL) implantation 
has become the most common medical procedures 
among persons age 65 and older. The success of this 
medical procedure is derived from several factors, such 
as surgical techniques, superior tools, skills and 
maneuvers, implant designs and preoperative 
diagnostics.  

The foldable IOL, made of a soft polymer (silicone or 
acrylic) of appropriate power, is folded during insertion 
(either using a holder/folder, or a proprietary insertion 
device provided along with the IOL) to allow 
implantation into the capsular bag within the posterior 
chamber (in-the-bag implantation) through a small 
incision. The IOL fixation into the capsular bag is made 
by the haptics.  

The requirements for foldable IOLs with advanced 
optical and mechanical properties, stability and 
biocompatibility have rapidly evolved. As high standards 
have been reached in modern cataract surgery, IOL 
implantation has become a safe and reliable procedure. 

The most frequent postoperative complication after 
cataract surgery is posterior capsule opacification (PCO - 
secondary cataract, after cataract) [1]. This phenomenon 
is attributed to the migration and proliferation of residual 
lens epithelial cells (LECs) onto the central posterior 
capsule, leading to progressive loss of visual acuity. A 
better understanding of PCO mechanisms would have 
obvious medical and financial immediate benefits [2].  

The main strategies to prevent or reduce the incidence of 
PCO are: new surgical techniques, new biomaterials 
composition, an IOL advanced manufacturing  

 

technology and optimal design, a higher biocompatibility 
and advanced surface characteristics of IOLs [3, 4, 5]. 

 Careful application and utilisation of these factors by 
surgeons could lead to a significant reduction of PCO 
and a long-term biocompatibility of the implant [6, 7]. 

Although surgical techniques, the biomaterials, 
manufacturing technology and design of IOLs have been 
extensively discussed, the surface characteristics of IOLs 
contribute significantly to an understanding of its clinical 
performance into the ocular environment, but are 
difficult to measure, evaluate and quantify [8 – 15]. 

The IOLs surface characteristics are referred to the 
physicochemical surface properties and surface 
topography.  

Three-dimensional (3D) characterization of IOLs surface 
topography is an integral part of IOLs quality control 
and permits a better understanding of the functional 
performance of IOLs surfaces and a better control of 
their manufacturing.  

In order to understand phenomena such as contacting 
surfaces, friction and lubrication surface, topography 
quantification is important. Unfortunately, the impact of 
IOL surface topography is not entirely understood. 

It has also been shown that the inflammatory cell 
adhesion to the IOL optical surface is directly 
proportional to the Sa value of the IOLs [16 - 26]. Also, 
the deteriorative effect of surface roughness on the 
optical quality of retina image is minimal unless the 
average roughness is over 50 nm, which extremely 
exceeds the range of roughness of IOLs used in clinic. 
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The complexity of IOL surface topography requires 3D 
surface characterization and measurement techniques at 
nanometer spatial resolution [27 - 29].  

IOLs surfaces have an unique and complex topography, 
created by different manufacturing processes, and 
requires 3D surface characterization and measurement 
techniques at nanometer spatial level.   

The results analysis offer a better understanding of IOLs 
behavior inside the ocular environment and in IOLs 
quality control.  

 

2. THE SURFACE AMPLITUDE PARAMETERS 

Surface topography is the 3D representation of the finer 
irregularities of the surface texture, usually including 
those irregularities that result from the inherent action of 
the manufacturing process. 

Considering a surface topography z(xi, yj) defined in a 
rectangular coordinating system OXYZ, with M and N 
being the measurement points on OX and OY axes 
respectively (i = 1,…, M and j = 1, …, N). If lx and ly are 
the lengths on OX axis and OY axis of the measured 
surface A, than it could be expressed as: 

y·  x,· 1) - (M; ∆1) − Ν( = ∆=⋅ = Α yxyx llll   (1) 

The S amplitude parameters are defined as [30]: 

a) The arithmetic mean deviation of the surface (Sa) is 
the arithmetic mean of the absolute values of the surface 
departures from the mean plane and is given by: 
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b) The root mean square deviation of the surface (Sq or 
RMS) is defined as: 
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c)  The ten point average of the absolute heights (Sz) of 
the five highest peaks (zpi) and five deepest valleys (zvi) 
is given by: 
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3. EXPERIMENTAL PROCEDURE 

Three intraocular lenses, model 911A CeeOn Edge® 
(Pharmacia & Upjohn Co.) with +20.0 diopters (D), 
were analyzed on different areas of the posterior optic 
surface. 

Specifications of the CeeOn Edge® 911A include a 
three-piece lens, the silicone material, equi-biconvex, 
foldable, with a refractive index of 1.46 and an optic size 
of 6 mm featuring no optic rim along a full optic zone. 
The overall length of the IOL is 12 mm with a square 
edge design featuring a haptic angulation of 6 degrees. 
The haptic material is polyvinylidene fluoride and uses a 
Cap C design. 

Topographic analysis of the IOL’s surface optic was 
performed with an atomic force microscope (Alpha 
300A, WITec, Ulm, Germany) which was operated in 
contact mode with ambient air at room temperature (21 - 
24 °C) and approximately 50 % relative humidity. 

A silicon nitride square pyramidal tip attached to a ‘D’-
type, ‘V’-shaped cantilever with a tip curvature of 15 nm 
and a nominal spring constant of 0.2 N/m was used for 
measurements. 

Before AFM imaging, every IOL was received as sterile 
implantation samples from the manufacturer and was 
removed with an atraumatic forceps and then was placed 
onto a sample holder. 

The measurements of each sample were made over on 4 
different reference areas of 4 µm x 4 µm with a 256 pixel 
x 256 pixel image definition at a scan rate of 1 Hz, to 
verify the reproducibility of the observed features. 

For analyze of AFM images and evaluation of surface 
roughness parameters WITec Project software (WITec 
GmbH, Ulm, Germany) was used [30]. 

Three quantitative parameters were used to characterize 
the morphology and roughness of the posterior optic 
surface: the arithmetic mean deviation of the surface 
(Sa), the root mean square deviation of the surface (Sq) 
and the ten point average of the absolute heights (Sz). 

Statistical analysis was used to statistically compare the 
differences among IOLs. Differences with a P value of 
0.05 or less were considered statistically significant. 
 

4. RESULTS 

AFM images revealed that the posterior optic surfaces of 
all the IOL samples were relatively smooth with 
numerous protruding microgranular features. Optic 
edges, haptic-optic junctions and the haptic ends was 
found to be smooth and regularly shaped. 

The surface roughness parameters of IOLs are shown as 
mean ± standard deviation (SD) in Table 1. 
 

Table 1. Surface roughness parameters of IOLs shown as 
mean ± standard deviation (SD) 

Sa [nm] Sq [nm] Sz [nm] 
3.36 ± 0.48 3.85 ± 0.65 22.64 ± 0.24 
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5. DISCUSSION 

The most important factors in IOLs interactions into the 
ocular environment are the properties of the 
biomaterials, the surface topography and the contacting 
conditions [31 – 40]. 

3D topographical characterization of IOLs surfaces 
allows for easy and intuitive interpretations with a proper 
set of parameters and plays an important role in 
monitoring and improving IOLs manufacturing 
processes. 

The surface roughness of each investigated IOL is 
according required clinically levels of stability, optical 
performance and biocompatibility. 

 

6. CONCLUSIONS 

Atomic force microscopy, due to its high resolution, is 
an accurate tool in the non-destructively investigation 
and analysis of surface topography of the IOLs at a 
nanometer level [41]. 

IOLs surface topography permits to choose IOLs more 
appropriate for different surgical situations and 
individual patient characteristics and to minimize the 
potential for PCO [42 - 45]. 

The study results allow us to have useful information 
about the IOLs behavior inside the ocular environment. 

This investigation of the AFM measurement system is in 
good agreement with experimental observations from the 
literature and thus leads to the belief that the results 
obtained with this measuring instrument are reliable in 
the case of IOLs surfaces. 
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